Asymptotic Bayesian Theory of Quickest Change Detection for Hidden Markov Models
نویسندگان
چکیده
In the 1960s, Shiryaev developed a Bayesian theory of change-point detection in the i.i.d. case, which was generalized in the beginning of the 2000s by Tartakovsky and Veeravalli for general stochastic models assuming a certain stability of the log-likelihood ratio process. Hidden Markov models represent a wide class of stochastic processes that are very useful in a variety of applications. In this paper, we investigate the performance of the Bayesian Shiryaev change-point detection rule for hidden Markov models. We propose a set of regularity conditions under which the Shiryaev procedure is first-order asymptotically optimal in a Bayesian context, minimizing moments of the detection delay up to certain order asymptotically as the probability of false alarm goes to zero. The developed theory for hidden Markov models is based on Markov chain representation for the likelihood ratio and r-quick convergence for Markov random walks. In addition, applying Markov nonlinear renewal theory, we present a high-order asymptotic approximation for the expected delay to detection of the Shiryaev detection rule. Asymptotic properties of another popular change detection rule, the Shiryaev–Roberts rule, is studied as well. Some interesting examples are given for illustration.
منابع مشابه
Quickest detection of intensity change for Poisson process in generalized Bayesian setting
The paper deals with the quickest detection of intensity change for Poisson process. We show that the generalized Bayesian formulation of the quickest detection problem can be reduced to the conditional-extremal optimal stopping problem for a piecewise-deterministic Markov process. For this problem the optimal procedure is described and its characteristics are found.
متن کاملQuickest Detection of Drift Change for Brownian Motion in Generalized Bayesian and Minimax Settings
The paper deals with the quickest detection of a change of the drift of the Brownian motion. We show that the generalized Bayesian formulation of the quickest detection problem can be reduced to the optimal stopping problem for a diffusion Markov process. For this problem the optimal procedure is described and its characteristics are found. We show also that the same procedure is asymptotically...
متن کاملBayesian Quickest Transient Change Detection
We consider the problem of quickest transient change detection under a Bayesian setting. The change occurs at a random time Γ1 and disappears at a random time Γ2 > Γ1. Thus, at any time k, the system can be in one of the following states, i) prechange, ii) in–change, and iii) out–of–change. We model the evolution of the state by a Markov chain. The state of the system can only be observed parti...
متن کاملQuickest Change Detection in Hidden Markov Models for Sensor Networks
The decentralized quickest change detection problem is studied in sensor networks, where a set of sensors receive observations from a hidden Markov model (HMM) X and send sensor messages to a central processor, called the fusion center, which makes a final decision when observations are stopped. It is assumed that the parameter θ in the hidden Markov model for X changes from θ0 to θ1 at some un...
متن کاملGeneral Asymptotic Bayesian Theory of Quickest Change Detection
The optimal detection procedure for detecting changes in independent and identically distributed (i.i.d.) sequences in a Bayesian setting was derived by Shiryaev in the 1960s. However, the analysis of the performance of this procedure in terms of the average detection delay and false alarm probability has been an open problem. In this paper, we develop a general asymptotic change-point detectio...
متن کامل